Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Radar target classification using doppler signatures of human locomotion models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bilik, I. ; Ben-Gurion Univ. of the Negev, Beer-Sheva ; Tabrikian, J.

The problem of target classification for ground surveillance Doppler radars is addressed. Two sources of knowledge are presented and incorporated within the classification algorithms: 1) statistical knowledge on radar target echo features, and 2) physical knowledge, represented via the locomotion models for different targets. The statistical knowledge is represented by distribution models whose parameters are estimated using a collected database. The physical knowledge is represented by target locomotion and radar measurements models. Various concepts to incorporate these sources of knowledge are presented. These concepts are tested using real data of radar echo records, which include three target classes: one person, two persons and vehicle. A combined approach, which implements both statistical and physical prior knowledge provides the best classification performance, and it achieves a classification rate of 99% in the three-class problem in high signal-to-noise conditions.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:43 ,  Issue: 4 )