By Topic

Performance evaluation of multi-sensor classification systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eswar Sivaraman ; United Airlines-Enterprise Optimization, Chicago ; Kuo-chu Chang

A common problem in classification is to use one/more sensors to observe repeated measurements of a target's features/attributes, and in turn update the targets' posterior classification probabilities to aid in target identification. This paper addresses the following questions: 1. How do we quantify the classification performance of a sensor? 2. What happens to the posterior probabilities as the number of measurements increase? 3. Will the targets be classified correctly? While the Kalman filter allows for off-line estimation of kinematic performance (covariance matrix), a comparable approach for studying classification accuracy has not been done previously. We develop a new analytical approach for computing the long-run classification performance of a sensor and also present recursive formulas for efficient calculation of the same. We show that, under a minimal condition, a sensor will eventually classify all targets perfectly. We also develop a methodology for evaluating the classification performance of multi-sensor fusion systems involving sensors of varying quality. The contributions of this paper are 1. A simple metric to quantify a sensor's ability to discriminate between the targets being identified, and its use in comparing multiple sensors, 2. An approximate formula based on this metric to compute off-line estimates of the rate of convergence toward perfect classification, and the number of measurements required to achieve a desired level of classification accuracy, and 3. The use of this metric to evaluate classification performance of multi-sensor fusion systems.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:43 ,  Issue: 4 )