Cart (Loading....) | Create Account
Close category search window
 

Modeling and Simulation of Laser Lift-off Process for LED's Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liuxi Tan ; Huazhong Univ. of Sci. & Technol., Wuhan ; Jia Li ; Sheng Liu

As high power LEDs develop rapidly, sapphire substrate on which LED's chips are grown, cannot meet the needs of the increasing performance any longer. Therefore, transfer of the devices from the former sapphire substrates to more thermally and electrically conductive receptor substrates is recommended. Laser peeling has been a new technology of separating films of GaN from the substrate on which they are grown. Experience shows that the films can be debonded intactly when the laser parameters are well controlled. In this contribution, the mechanics of the laser-assisted debonding of GaN films on sapphire, silicon and copper substrates is considered so that the specific parameters can be optimized in order to achieve a feasible process scheme that may be used in the industry. During the simulation, the knowledge of interfacial crack generation between dissimilar materials is considered to be the essential principle of the process of "liftoff". Failure of the interfaces results in the debonding. Whatever, the films of chips should not be damaged in the duration of the "lift-off" process. A few important issues such as temperature distribution, stress distribution and energy release rate are raised in terms of examining whether the films are likely to be damaged.

Published in:

Electronic Packaging Technology, 2007. ICEPT 2007. 8th International Conference on

Date of Conference:

14-17 Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.