By Topic

Analysis of Fault-Tolerant Performance of a Doubly Salient Permanent-Magnet Motor Drive Using Transient Cosimulation Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Doubly salient permanent-magnet (DSPM) motors offer the advantages of high power density and high efficiency. In this paper, it is examined that the DSPM motor is a new class of fault-tolerant machines, a potential candidate for many applications where reliability and power density are of importance. Fault analysis is performed in a DSPM motor drive, including internal and external faults. Due to the fact that the experimentation on a true motor drive for such a purpose is impractical because of its high cost and difficulty to make, a new cosimulation model of a DSPM motor drive is developed using coupled magnetic and electric circuit solvers. Last, to improve the performance of a DSPM motor drive with an open-circuited fault, a fault compensation strategy is proposed. Simulation and experimental results are presented, showing the effectiveness of the proposed cosimulation method and the high performance of the fault-tolerant characteristic of DSPM motor drives.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 4 )