By Topic

Throughput and Fairness Guarantees Through Maximal Scheduling in Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Prasanna Chaporkar ; Indian Inst. of Technol., Mumbai ; Koushik Kar ; Xiang Luo ; Saswati Sarkar

The question of providing throughput guarantees through distributed scheduling, which has remained an open problem for some time, is addressed in this paper. It is shown that a simple distributed scheduling strategy, maximal scheduling, attains a guaranteed fraction of the maximum throughput region in arbitrary wireless networks. The guaranteed fraction depends on the ldquointerference degreerdquo of the network, which is the maximum number of transmitter-receiver pairs that interfere with any given transmitter-receiver pair in the network and do not interfere with each other. Depending on the nature of communication, the transmission powers and the propagation models, the guaranteed fraction can be lower-bounded by the maximum link degrees in the underlying topology, or even by constants that are independent of the topology. The guarantees are tight in that they cannot be improved any further with maximal scheduling. The results can be generalized to end-to-end multihop sessions. Finally, enhancements to maximal scheduling that can guarantee fairness of rate allocation among different sessions, are discussed.

Published in:

IEEE Transactions on Information Theory  (Volume:54 ,  Issue: 2 )