By Topic

\hbox {CO}_{\bf 2} Reforming of Aliphatic Hydrocarbons With Silent Discharge Plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Masami Sugasawa ; Nat. Inst. of Adv. Ind. Sci. & Technol., Tsukuba ; Shigeru Futamura

CO2 reforming of methane ( CH4) and propane (C3H8) was performed with a silent discharge reactor (SDR). The reactor performance was evaluated in terms of energy efficiencies for the conversion of the substrates and formation of H2 and CO. The reactivity of C3H8 was 2- to 3-fold higher than that of CH4, and both of CH4 and C3H8 were reformed in the order of 1016 molecules/J at 298 K. The energy efficiencies for the conversion of these substrates increased with their initial concentrations, but decreased with an increase in reactor energy density. On the other hand, the energy efficiencies for the conversion of CO2, which were not affected by the hydrocarbon types, were lower than those for the hydrocarbon substrates. A positive temperature effect was observed in the conversion of the hydrocarbon substrates only at low reactor energy densities from 298 to 433 K.

Published in:

IEEE Transactions on Industry Applications  (Volume:44 ,  Issue: 1 )