By Topic

Delay-Dependent Criteria for Global Robust Periodicity of Uncertain Switched Recurrent Neural Networks With Time-Varying Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xuyang Lou ; Jiangnan Univ., Wuxi ; Baotong Cui

In this paper, we introduce some ideas of switched systems into the field of neural networks and a large class of switched recurrent neural networks (SRNNs) with time-varying structured uncertainties and time-varying delay is investigated. Some delay-dependent robust periodicity criteria guaranteeing the existence, uniqueness, and global asymptotic stability of periodic solution for all admissible parametric uncertainties are devised by taking the relationship between the terms in the Leibniz-Newton formula into account. Because free weighting matrices are used to express this relationship and the appropriate ones are selected by means of linear matrix inequalities (LMIs), the criteria are less conservative than existing ones reported in the literature for delayed neural networks with parameter uncertainties. Some examples are given to show that the proposed criteria are effective and are an improvement over previous ones.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 4 )