Cart (Loading....) | Create Account
Close category search window

Further Results on Delay-Dependent Stability Criteria of Neural Networks With Time-Varying Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tao Li ; Southeast Univ., Nanjing ; Lei Guo ; Changyin Sun ; Chong Lin

In this brief paper, an augmented Lyapunov functional, which takes an integral term of state vector into account, is introduced. Owing to the functional, an improved delay-dependent asymptotic stability criterion for delayed neural networks (NNs) is derived in term of linear matrix inequalities (LMIs). It is shown that the obtained criterion can provide less conservative result than some existing ones. When linear fractional uncertainties appear in NNs, a new robust delay-dependent stability condition is also given. Numerical examples are given to demonstrate the applicability of the proposed approach.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 4 )

Date of Publication:

April 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.