By Topic

A Leader-Follower Computational Learning Approach to the Study of Restructured Electricity Markets: Investigating Price Caps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tharakunnel, K. ; Univ. of Illinois at Chicago, Chicago ; Bhattacharyya, S.

This paper discusses the use of a computational learning approach based on a leader-follower multiagent framework in the study of regulation of restructured electricity markets. In a leader-follower multiagent system (LFMAS), a leader (regulator) determines an appropriate incentive, which motivates a set of self-interested followers (the generators, in this case) to act such that some measure of overall performance is maximized. In the computational learning approach presented, models of followers as well as the leader incorporate reinforcement learning, allowing the exploration of outcomes with different incentives, and also the learning of 'optimal' incentive given some measure of desired overall performance. The approach is demonstrated in studying the effect of price caps on the outcome of electricity auctions (uniform and discriminatory) in oligopoly settings for which analytical treatments do not exist.

Published in:

Hawaii International Conference on System Sciences, Proceedings of the 41st Annual

Date of Conference:

7-10 Jan. 2008