By Topic

Towards Automatic Traffic Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhaohong Lai ; Univ. Coll. London, London ; Galis, A. ; Rio, M. ; Todd, C.

Classification of network traffic recently has attracted a great deal of interest as it plays important roles in many areas such as traffic engineering, service class mapping, network management etc. One of the challenging issues for existing detection schemes is that they need prior manual analysis to detect unknown traffic, which is infeasible to cope with the fast growing number of new applications. In this paper, we propose an automatic traffic classification scheme, which is realised by managing traffic detection knowledge with the use of ontologies on the one hand, while developing the self-learning model on traffic detection according to ontologies on the other hand. Also, based on two scenarios, the experiment results demonstrate the automated detection capability for the proposed scheme.

Published in:

Networking and Services, 2007. ICNS. Third International Conference on

Date of Conference:

19-25 June 2007