By Topic

Tradeoffs in the design of efficient algorithm-based error detection schemes for hypercube multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. Balasubramanian ; Dept. of Electr. Eng., Illinois Univ., Urbana, IL, USA ; P. Banerjee

The authors provide an in-depth study of the various issues and tradeoffs available in algorithm-based error detection, as well as a general methodology for evaluating the schemes. They illustrate the approach on an extremely useful computation in the field of numerical linear algebra: QR factorization. They have implemented and investigated numerous ways of applying algorithm-based error detection using different system-level encoding strategies for QR factorization. Specifically, schemes based on the checksum and sum-of-squares (SOS) encoding techniques have been developed. The results of studies performed on a 16-processor Intel iPSC-2/D4/MX hypercube multiprocessor are reported. It is shown that, in general, the SOS approach gives much better coverage (85-100%) for QR factorization while maintaining low overheads (below 10%)

Published in:

IEEE Transactions on Software Engineering  (Volume:16 ,  Issue: 2 )