By Topic

Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
W. Q. Wang ; Nat. Key Lab. of Microwave Imaging Technol., Chinese Acad. of Sci., Beijing ; C. B. Ding ; X. D. Liang

Bistatic synthetic aperture radar (BiSAR) operates with distinct transmitter and receiver that are mounted on separate platforms. Such a spatial separation results in problems and special requirements that are either not encountered or encountered in less serious form for monostatic SAR. Directly associated with these requirements one has to solve the problems of highly accurate time and phase synchronisations. The impact of oscillator frequency instability on BiSAR is analysed, and a time and phase synchronisation technique via direct-path signal is proposed. With the proposed technique, the direct-path signal of transmitter is received with one appropriative antenna and divided into two channels, one is passed through an envelope detector and used to synchronise the sampling clock, and the other is down-converted and used to compensate the phase synchronisation errors. Finally, the residual time synchronisation error is compensated with range alignment, and the residual phase synchronisation error is compensated with global positioning system/inertial navigation system/inertial measurement units (GPS/INS/IMU) information; then the focusing of BiSAR image can be achieved. Based on this technique, a prototype linearly frequency modulated BiSAR synchronisation system is constructed.The effectiveness of this proposed technique is verified with simulation data.

Published in:

IET Radar, Sonar & Navigation  (Volume:2 ,  Issue: 1 )