By Topic

Space Vector Sequence Investigation and Synchronization Methods for Active Front-End Rectifiers in High-Power Current-Source Drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yun Wei Li ; Univ. of Alberta, Edmonton ; Bin Wu ; Xu, D. ; Zargari, N.R.

Space vector pulsewidth modulation (PWM) schemes for the active front end of a high-power drive normally produce low-order and suborder harmonics due to the low switching frequency and the drifting of synchronization between the PWM waveform and the rectifier input frequency. To provide a synchronized PWM and achieve the best harmonic performance, different space vector sequences suitable for a current-source converter are investigated in this paper. Details on how to achieve the waveform symmetries with a minimum switching frequency for each sequence are discussed. A thorough comparison of the harmonic performance of different space vector sequences is carried out. An optimum space vector modulation method by switching between two best sequences is proposed to achieve the best line-current total harmonic distortion with reduced switching losses. In addition, two synchronization methods, namely a PWM frame regulation method and a direct digital phase-locked loop synchronization method, are proposed. Both methods are equally effective in providing tight synchronization of the PWM waveform with the rectifier input frequency. The work has been verified in simulation and experiment.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 3 )