By Topic

Initial studies of PET-SPECT dual-tracer imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yiping Shao ; Department of Nuclear Medicine, State University of New York at Buffalo, 14214, USA ; Rutao Yao ; Tianyu Ma ; Phani Manchiraju

Simultaneous PET and SPECT dual-tracer imaging with common detector and bed will potentially open the door for many new clinical and preclinical applications, such as two receptor binding studies or perfusion-metabolism differential imaging of neurodegenerative diseases, and can be technically advantageous in certain aspects compared to conventional SPECT dual-tracer or PET dual-tracer imaging. In this feasibility study, PET and SPECT data from concurrently existing Tc-99m and F-18 radiotracers were acquired with the same acquisition hardware setup: a microPET and a collimator inside the gantry. The collimator is a slit-slat type, consists of knife-edge slits formed by Lead plates and septa formed by annular Tungsten sheets to form 2D fan beam geometry. SPECT data were acquired in list-mode with 135-145 keV energy window. With the collimator stayed inside the gantry, PET data were acquired and processed to correct collimator effects. A hot-rod phantom was filled with Tc-99m and F-18 tracers in separated rods so that possible contamination between the PET and SPECT acquisitions can be evaluated. The rods are 0.9-2.3 mm in diameters and separated by roughly twice of the rod diameter. The ratio of activity concentration between the two tracers was close to 1:1. Since there is no corresponding simultaneous data acquisition mode available in the current system, PET and SPECT data were acquired successively with the same hardware setup and phantom position to mimic the simultaneous imaging. The rod images corresponding to PET and SPECT were well separated without severe artifacts. The data corrections, including LSO background and down-scatter from 511 keV photons to the SPECT acquisition were applied to the corresponding images. In addition, F-18 PET images of a phantom acquired with and without collimator reveal slight degradation in image quality due to the attenuation and extra data correction. Initial PET-SPECT dual-tracer mouse images were acquired and fused with mi- xed Tc-99m MDP and F-18 FDG injection. These studies have demonstrated the feasibility to acquire simultaneous PET-SPECT dual-tracer images with a microPET and a collimator insert.

Published in:

2007 IEEE Nuclear Science Symposium Conference Record  (Volume:6 )

Date of Conference:

Oct. 26 2007-Nov. 3 2007