By Topic

Systolic and Super-Systolic Multipliers for Finite Field GF(2^{m}) Based on Irreducible Trinomials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Meher, P.K. ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore

Novel systolic and super-systolic architectures are presented for polynomial basis multiplication over GF(2m) based on irreducible trinomials. By suitable cut-set retiming, we have derived here an efficient bit-level-pipelined bit-parallel systolic design for binary field multiplication which requires fewer gates and registers and involves nearly half the time-complexity of the corresponding existing design. We have also suggested a digit-level-pipelined design, which involves lower latency, and fewer registers compared with the bit-level-pipelined structure. Moreover, we have proposed a super-systolic design consisting of a set of systolic arrays in a systolic-pipeline and a pipelined systolic-block design consisting of a pipelined blocks of concurrent systolic arrays. The super-systolic designs have the same average computation time and the same critical path as the proposed bit-level-pipelined design, but can be used to reduce the latency by a factor O(radic(m)) at the cost of marginally higher number of XOR gates and bit-registers. The hardware complexities of proposed super-systolic designs are nearly three times that of the existing bit-parallel structures, but offer very high throughput compared with the others for large values of m. For the field orders m = 233 and m = 409, the proposed structures offer, respectively, ten and eleven times more throughput than the others.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:55 ,  Issue: 4 )