By Topic

Adaptive Reshaping of Excitation Currents for Accurate Torque Control of Brushless Motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Farhad Aghili ; Canadian Space Agency, Saint-Hubert

Accurate torque control of a brushless motor requires the motor's torque characteristics, which follows a periodic function of motor angle. This brief presents a direct adaptive controller for torque control of brushless motors, which estimates the Fourier coefficients of this periodic function based on the measurements of motor phase voltage and angle. It will be analytically shown that the proposed adaptive controller achieves torque tracking regardless of the trajectories of input signals. Moreover, the adaptive controller does not rely on the modeling of the mechanical load, so that control implementation is simple and modular. Experimental results obtained from the McGill/MIT motor have demonstrated that motor torque converges to the command torque.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:16 ,  Issue: 2 )