By Topic

High-impedance fault detection using multi-resolution signal decomposition and adaptive neural fuzzy inference system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Etemadi, A.H. ; Sharif Univ. of Technol., Tehran ; Sanaye-Pasand, M.

High-impedance faults (HIFs) on distribution systems create unique challenges to protection engineers. HIFs do not produce enough fault current to be detected by conventional overcurrent relays or fuses. A method for HIF detection based on the nonlinear behaviour of current waveforms is presented. Using this method, HIFs can be distinguished successfully from other similar waveforms such as nonlinear load currents, secondary current of saturated current transformers and inrush currents. A wavelet multi-resolution signal decomposition method is used for feature extraction. Extracted features are fed to an adaptive neural fuzzy inference system (ANFIS) for identification and classification. The effect of choice of mother wavelet is also analysed by investigating a large number of wavelet families. Various simulation results, which are obtained using an appropriate model, are summarised and efficiency of the proposed algorithm for dependable and secure HIF detection is determined.

Published in:

Generation, Transmission & Distribution, IET  (Volume:2 ,  Issue: 1 )