By Topic

On Using Prototype Reduction Schemes to Optimize Kernel-Based Fisher Discriminant Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sang-Woon Kim ; Myongji Univ., Yongin ; B. John Oommen

Fisher's linear discriminant analysis (LDA) is a traditional dimensionality reduction method that has been proven to be successful for decades. Numerous variants, such as the kernel-based Fisher discriminant analysis (KFDA), have been proposed to enhance the LDA's power for nonlinear discriminants. Although effective, the KFDA is computationally expensive, since the complexity increases with the size of the data set. In this correspondence, we suggest a novel strategy to enhance the computation for an entire family of the KFDAs. Rather than invoke the KFDA for the entire data set, we advocate that the data be first reduced into a smaller representative subset using a prototype reduction scheme and that the dimensionality reduction be achieved by invoking a KFDA on this reduced data set. In this way, data points that are ineffective in the dimension reduction and classification can be eliminated to obtain a significantly reduced kernel matrix K without degrading the performance. Our experimental results demonstrate that the proposed mechanism dramatically reduces the computation time without sacrificing the classification accuracy for artificial and real-life data sets.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:38 ,  Issue: 2 )