By Topic

Covariance Matrix Estimation With Heterogeneous Samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Besson, O. ; Univ. of Toulouse, Toulouse ; Bidon, S. ; Tourneret, J.-Y.

We consider the problem of estimating the covariance matrix Mp of an observation vector, using heterogeneous training samples, i.e., samples whose covariance matrices are not exactly Mp. More precisely, we assume that the training samples can be clustered into K groups, each one containing Lk, snapshots sharing the same covariance matrix Mk. Furthermore, a Bayesian approach is proposed in which the matrices Mk. are assumed to be random with some prior distribution. We consider two different assumptions for Mp. In a fully Bayesian framework, Mp is assumed to be random with a given prior distribution. Under this assumption, we derive the minimum mean-square error (MMSE) estimator of Mp which is implemented using a Gibbs-sampling strategy. Moreover, a simpler scheme based on a weighted sample covariance matrix (SCM) is also considered. The weights minimizing the mean square error (MSE) of the estimated covariance matrix are derived. Furthermore, we consider estimators based on colored or diagonal loading of the weighted SCM, and we determine theoretically the optimal level of loading. Finally, in order to relax the a priori assumptions about the covariance matrix Mp, the second part of the paper assumes that this matrix is deterministic and derives its maximum-likelihood estimator. Numerical simulations are presented to illustrate the performance of the different estimation schemes.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 3 )