By Topic

A Step Toward Optimization of Cancer Therapeutics [Chronobiological Investigations]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Clairambault, J. ; Inst. Nat. de Recherche en Inf. et en Autom., Rocquencourt

An integrative physiology model has been designed, which takes into account the cell proliferation at the level of a population of cells by age-structured partial differential equations (PDEs), its control by cell cycle proteins, and the control of these molecular mechanisms by the circadian system, designed as a network of coupled oscillators also described by ODEs. Cancer growth and response to therapy by anticancer drugs have been shown to be dependent on circadian clock inputs. This multiscale modeling framework will provide clinicians with a theoretical tool to bridge the gap between the pharmaceutical clinical control level and the molecular pharmacological hidden level of drug action.

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:27 ,  Issue: 1 )