By Topic

Local and Global Stability Analysis of an Unsupervised Competitive Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Meyer-Base, A. ; Florida State Univ., Tallahassee ; Thummler, V.

Unsupervised competitive neural networks (UCNN) are an established technique in pattern recognition for feature extraction and cluster analysis. A novel model of an unsupervised competitive neural network implementing a multitime scale dynamics is proposed in this letter. The local and global asymptotic stability of the equilibrium points of this continuous-time recurrent system whose weights are adapted based on a competitive learning law is mathematically analyzed. The proposed neural network and the derived results are compared with those obtained from other multitime scale architectures.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 2 )