By Topic

RF Amplitude and Phase-Noise Reduction of an Optical Link and an Opto-Electronic Oscillator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eliyahu, D. ; OEwaves Inc., Pasadena ; Seidel, D. ; Maleki, L.

In this paper we examine the optical sources of noise that degrade high-performance microwave photonic links. In particular, we study the residual phase noise due to laser frequency fluctuations and the detector nonlinearity on microwave signals transmitted on an optical fiber, or generated in the opto-electronic oscillator (OEO). Based on experimental findings, we identify a significant reduction of the relative intensity noise of the laser if the received optical power saturates the photodiode. Furthermore, we suggest the use of a semiconductor optical amplifier in saturation as yet another means to reduce the phase noise induced by laser intensity fluctuations. We also identify the use of multiple photodetectors to reduce the influence of associated 1/f noise, which adds to the phase noise of a transmitted microwave signal, and is the ultimate limitation to the phase noise of the high-performance OEO. Reduction of noise that is due to optical interferences is also addressed.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 2 )