By Topic

Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chao Wang ; Univ. of Ottawa, Ottawa ; Jianping Yao

A novel approach to optically generating chirped millimeter-wave pulses with tunable chirp rate based on spectral shaping and nonlinear frequency-to-time mapping is proposed and experimentally demonstrated. In the proposed approach, the optical power spectrum of an ultrashort pulse from a femtosecond pulsed laser is shaped by a two-tap Sagnac loop filter that has a sinusoidal frequency response. The spectrum-shaped optical pulse is then sent to a nonlinearly chirped fiber Bragg grating (NL-CFBG) with a tunable nonlinear group delay to serve as a high-order dispersive device to perform the nonlinear frequency-to-time mapping. A chirped electrical pulse with a high central frequency and large chirp rate is then generated at the output of a high-speed photodetector. The NL-CFBG used in the proposed system is produced from a regular linearly chirped fiber Bragg grating based on strain-gradient beam tuning. A detailed theoretical analysis on the chirped pulse generation is developed, which is verified by numerical simulations and experiments. Millimeter-wave pulses with a central frequency of around 35 GHz and instantaneous frequency chirp rates of 0.053 and 0.074 GHz/ps are experimentally generated.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:56 ,  Issue: 2 )