Cart (Loading....) | Create Account
Close category search window
 

LQG control for distributed systems over TCP-like erasure channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Garone, E. ; Univ. degli Studi della Calabria, Rende ; Sinopoli, B. ; Casavola, A.

This paper is concerned with control applications over lossy data network. Sensor data is transmitted to an estimation-control unit over a network and control commands are issued to subsystems over the same network. Sensor and control packets may be randomly lost according to a Bernoulli process. In this context the discrete-time Linear Quadratic Gaussian (LQG) optimal control problem is considered. In B. Sinopoli, et al., (Aug. 2003) a complete analysis was carried out for the case the network is composed of a single sensor and control channel. Here a nontrivial generalization to the case of sensor and actuator networks with p distinct sensor channels and m control channels is presented. It has been proven that the separation principle still holds for all protocols where packets are acknowledged by the receiver (e.g. TCP-like protocols). Moreover it has been pointed out for the first time that the optimal LQG control is a linear function of the state that explicitly depends on the command channels lost probabilities. Such a dependence is not present in pre-existing literature, since the amplitude of each control input has to be weighted by the loss probability associated to its own channel. This is not observed in the single channel case. In the infinite horizon case stability conditions on the arrival are derived. Their computation requires the use of linear matrix inequalities (LMIs).

Published in:

Decision and Control, 2007 46th IEEE Conference on

Date of Conference:

12-14 Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.