Cart (Loading....) | Create Account
Close category search window

Model-based iterative learning control applied to an industrial robot with elasticity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)

In this paper model-based iterative learning control (ILC) is applied to improve the tracking accuracy of an industrial robot with elasticity. The ILC algorithm iteratively updates the reference trajectory for the robot such that the predicted tracking error in the next iteration is minimised. The tracking error is predicted by a model of the closed-loop dynamics of the robot. The model includes the servo resonance frequency, the first resonance frequency caused by elasticity in the mechanism and the variation of both frequencies along the trajectory. Experimental results show that the tracking error of the robot can be reduced, even at frequencies beyond the first elastic resonance frequency.

Published in:

Decision and Control, 2007 46th IEEE Conference on

Date of Conference:

12-14 Dec. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.