By Topic

Distributed Kalman filtering for sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Olfati-Saber, R. ; Dartmouth Coll., Hanover

In this paper, we introduce three novel distributed Kalman filtering (DKF) algorithms for sensor networks. The first algorithm is a modification of a previous DKF algorithm presented by the author in CDC-ECC '05. The previous algorithm was only applicable to sensors with identical observation matrices which meant the process had to be observable by every sensor. The modified DKF algorithm uses two identical consensus filters for fusion of the sensor data and covariance information and is applicable to sensor networks with different observation matrices. This enables the sensor network to act as a collective observer for the processes occurring in an environment. Then, we introduce a continuous-time distributed Kalman filter that uses local aggregation of the sensor data but attempts to reach a consensus on estimates with other nodes in the network. This peer-to-peer distributed estimation method gives rise to two iterative distributed Kalman filtering algorithms with different consensus strategies on estimates. Communication complexity and packet-loss issues are discussed. The performance and effectiveness of these distributed Kalman filtering algorithms are compared and demonstrated on a target tracking task.

Published in:

Decision and Control, 2007 46th IEEE Conference on

Date of Conference:

12-14 Dec. 2007