By Topic

Small world phenomenon, rapidly mixing Markov chains, and average consensus algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alireza Tahbaz-Salehi ; GRASP Laboratory and Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, 19104-6228, USA ; Ali Jadbabaie

In this paper, we demonstrate the relationship between the diameter of a graph and the mixing time of a symmetric Markov chain defined on it. We use this relationship to show that graphs with the small world property have dramatically small mixing times. Based on this result, we conclude that addition of independent random edges with arbitrarily small probabilities to a cycle significantly increases the convergence speed of average consensus algorithms, meaning that small world networks reach consensus orders of magnitude faster than a cycle. Furthermore, this dramatic increase happens for any positive probability of random edges. The same argument is used to draw a similar conclusion for the case of addition of a random matching to the cycle.

Published in:

Decision and Control, 2007 46th IEEE Conference on

Date of Conference:

12-14 Dec. 2007