Cart (Loading....) | Create Account
Close category search window
 

Deferrable Scheduling for Maintaining Real-Time Data Freshness: Algorithms, Analysis, and Results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ming Xiong ; Bell Labs., Alcatel-Lucent, Murray, NJ ; Song Han ; Kam-Yiu Lam ; Deji Chen

The periodic update transaction model has been used to maintain the freshness (or temporal validity) of real-time data. Period and deadline assignment has been the main focus of past studies, such as the More-Less scheme [25], in which update transactions are guaranteed by the Deadline Monotonic scheduling algorithm [16] to complete by their deadlines. In this paper, we propose a deferrable scheduling algorithm for fixed-priority transactions, a novel approach for minimizing update workload while maintaining the temporal validity of real-time data. In contrast to prior work on maintaining data freshness periodically, update transactions follow an aperiodic task model in the deferrable scheduling algorithm. The deferrable scheduling algorithm exploits the semantics of temporal validity constraint of real-time data by judiciously deferring the sampling times of update transaction jobs as late as possible. We present a theoretical estimation of its processor utilization and a sufficient condition for its schedulability. Our experimental results verify the theoretical estimation of the processor utilization. We demonstrate through the experiments that the deferrable scheduling algorithm is an effective approach and it significantly outperforms the More-Less scheme in terms of reducing processor workload.

Published in:

Computers, IEEE Transactions on  (Volume:57 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.