By Topic

Optimum Design of Cascaded Digital Filters in Wideband Wireless Transmitters using Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Parikh, V.K. ; Department of Electrical Engineering, University of Texas at Dallas ; Modi, S.S. ; Balsara, P.T.

In digitally intensive direct conversion transmitters, the baseband data is up-sampled to the RF rate. As the bandwidth of the baseband data increases, carefully designed cascaded digital filters are required in order to attenuate the wide replicas generated during the digital up-sampling process. Though design methodologies for single stage digital filters are very well established, near-optimum design of such multistage filters typically requires selection of several parameters by trial-and-error. This approach is time-consuming and does not assure the optimum solution (i.e. lowest area/power) under various performance constraints. In this paper, a genetic algorithm (GA) based generic automated search methodology for design of such cascaded filters is proposed. The proposed technique is demonstrated for digital WiMAX and WCDMA transmitters, for which near-optimal solutions appear to have been achieved in a relatively short time compared to the traditional manual design techniques.

Published in:

System-on-Chip, 2007. DCAS 2007. 6th IEEE Dallas Circuits and Systems Workshop on

Date of Conference:

15-16 Nov. 2007