Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Asymptotic Performance Analysis of Blind Minimum Output Energy Receivers for Large DS-CDMA Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zarifi, K. ; Darmstadt Univ. of Technol., Darmstadt ; Gershman, A.B.

The random matrix theory is used to analyze the asymptotic performance of the blind minimum output energy (MOE) receiver in direct-sequence code division multiple-access (DS-CDMA) systems in the presence of unknown multipath channel under the condition that the spreading factor and the number of users go to infinity with the same rate. As a special case, the asymptotic properties of the blind Capon receiver are also studied and the conditions of convergence of the signal-to-interference-plus-noise ratio (SINR) of this receiver to that of the optimal minimum-mean-square error (MMSE) receiver are discussed. In particular, it is shown that the SINR performances of the Capon and MMSE receivers are nearly identical in the uplink scenario, while the performance of the Capon receiver may be considerably inferior to that of the MMSE receiver in the downlink transmission case. As the performance of the Capon receiver is closely related to the performance of the Capon channel estimator, the asymptotic properties of the latter estimator are also studied and the conditions of convergence of the Capon channel estimate to a scaled version of the channel vector of the user-of-interest are obtained.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 2 )