By Topic

Design and Analysis of Supervised and Decision-Directed Estimators of the MMSE/LCMV Filter in Data Limited Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Farrell, J.M. ; Booz Allen Hamilton, Arlington ; Psaromiligkos, I.N. ; Batalama, S.N.

We consider sample-matrix-inversion (SMI)-type estimates of the minimum-mean-square-error (MMSE) and the linearly constrained-minimum-variance (LCMV) linear filters obtained from data records of limited size. We quantify theoretically the (detrimental) effect of the desired-signal energy level on the mean square (MS) filter estimation error and the normalized output signal-to-interference-plus-noise ratio (SINR) by deriving a new exact analytical expression and a lower bound, respectively. For cases where accumulation of pure disturbance observations is not possible, we show theoretically how certain intuitive, pilot-assisted, and decision-directed adaptive filter implementations that utilize desired-signal-present data/observations perform close to their desired-signal-absent counterparts. Simulation studies illustrate our theoretical developments in the context of spread-spectrum communications over multipath fading channels under perfect and nonperfect synchronization.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 2 )