By Topic

Investigation of Optimum Electrode Locations by Using an Automatized Surface Electromyography Analysis Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nishihara, K. ; Saitama Prefectural Univ., Koshigaya ; Kawai, H. ; Gomi, T. ; Terajima, M.
more authors

Identification of the innervation zone is widely used to optimize the accuracy and precision of noninvasive surface electromyography (EMG) signals because the EMG signal is strongly influenced by innervation zones. However, simply structured fusiform muscle, such as biceps brachii muscle, has been employed mainly due to the simplicity with which the propagation from raw EMG signals can be observed. In this study, the optimum electrode location (OEL), free from innervational influence, was investigated by the propagation pattern of action potentials for brachii muscles and more complicated deltoid muscle structures using an automatized signal analysis technique. The technique employed newly developed computer software with additional clinical uses and minimized subjective differences. EMG signals were recorded using surface array electrodes during voluntary isometric contractions obtained from 12 healthy male subjects. Peaks in EMG signals were detected and averaged for each muscle. The propagation patterns and OEL were examined from biceps brachii muscles for all subjects and from deltoid muscles for seven subjects. The estimated locations were partially confirmed by comparing the root mean squares of the EMG signals. These results show that propagation patterns and OEL could be estimated simply and automatically even from the surface EMG signals of deltoid muscles.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 2 )