By Topic

Manufacture of Passive Dynamic Ankle–Foot Orthoses Using Selective Laser Sintering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Faustini, M.C. ; Univ. of Texas at Austin, Austin ; Neptune, R.R. ; Crawford, R.H. ; Stanhope, S.J.

Ankle-foot orthosis (AFO) designs vary in size, shape, and functional characteristics depending on the desired clinical application. Passive Dynamic (PD) Response ankle-foot orthoses (PD-AFOs) constitute a design that seeks to improve walking ability for persons with various neuromuscular disorders by passively (like a spring) providing variable levels of support during the stance phase of gait. Current PD-AFO manufacturing technology is either labor intensive or not well suited for the detailed refinement of PD-AFO bending stiffness characteristics. The primary objective of this study was to explore the feasibility of using a rapid freeform prototyping technique, selective laser sintering (SLS), as a PD-AFO manufacturing process. Feasibility was determined by replicating the shape and functional characteristics of a carbon fiber AFO (CF-AFO). The study showed that a SLS-based framework is ideally suited for this application. A second objective was to determine the optimal SLS material for PD-AFOs to store and release elastic energy; considering minimizing energy dissipation through internal friction is a desired material characteristic. This study compared the mechanical damping of the CF-AFO to PD-AFOs manufactured by SLS using three different materials. Mechanical damping evaluation ranked the materials as Rilsantrade D80 (best), followed by DuraFormtrade PA and DuraFormtrade GF. In addition, Rilsantrade D80 was the only SLS material able to withstand large deformations.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 2 )