By Topic

Estimating Broadband Emissivity of Arid Regions and Its Seasonal Variations Using Thermal Infrared Remote Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kenta Ogawa ; Dept. of Geosystem Eng., Tokyo Univ., Tokyo ; Thomas Schmugge ; Shuichi Rokugawa

Surface emissivity in the thermal infrared region is an important parameter for determining the surface radiation budget in climate, weather, and hydrological models. This paper focuses on estimating the spatial and temporal variations of the surface emissivities using thermal infrared remotely sensed data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra satellite. We developed a regression approach to use the ASTER and MODIS data for estimating the broadband emissivity (BBE; 8-13.5 mum). The regressions were calibrated using a library of spectral emissivity data for terrestrial materials. We applied these regressions to ASTER and MODIS data to obtain emissivity maps for several arid regions of the Earth. In the 8-9-mum band for sparsely or nonvegetated desert areas, emissivity values between 0.66 and 0.96 have been observed, which are due to the low emissivity of quartz-rich sands at these wavelengths. As a result, the range of BBE is between 0.86 and 0.96. The seasonal variation over a two-year period and the dependence on land cover/soil type were also investigated.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:46 ,  Issue: 2 )