By Topic

Magnetic Bearing Configurations: Theoretical and Experimental Studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pranab Samanta ; Indian Inst. of Technol. Bombay, Mumbai ; Harish Hirani

A radial magnetic bearing, consisting of two permanent magnets, is an attractive choice because of its zero wear, negligible friction, and low cost, but it suffers from low load capacity, low radial stiffness, lack of damping, and high axial instability. To enhance the radial load and radial stiffness, and reduce the axial thrust, we have made a theoretical and experimental study of various radial configurations, including hydrodynamic lubrication to improve dynamic performance of the magnetic bearing. We developed an experimental setup to investigate the performance of bearing configurations under different operating conditions. The motion of a rotating shaft is mapped by two displacement sensors with a data acquisition system and personal computer. The first critical speed of each configuration is determined experimentally and verified through frequency analysis. We present a polar plot of displacement data.

Published in:

IEEE Transactions on Magnetics  (Volume:44 ,  Issue: 2 )