By Topic

An Efficient Hybrid Music Recommender System Using an Incrementally Trainable Probabilistic Generative Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yoshii, K. ; Dept. of Intell. Sci. & Technol., Kyoto Univ., Kyoto ; Goto, M. ; Komatani, K. ; Ogata, T.
more authors

This paper presents a hybrid music recommender system that ranks musical pieces while efficiently maintaining collaborative and content-based data, i.e., rating scores given by users and acoustic features of audio signals. This hybrid approach overcomes the conventional tradeoff between recommendation accuracy and variety of recommended artists. Collaborative filtering, which is used on e-commerce sites, cannot recommend nonbrated pieces and provides a narrow variety of artists. Content-based filtering does not have satisfactory accuracy because it is based on the heuristics that the user's favorite pieces will have similar musical content despite there being exceptions. To attain a higher recommendation accuracy along with a wider variety of artists, we use a probabilistic generative model that unifies the collaborative and content-based data in a principled way. This model can explain the generative mechanism of the observed data in the probability theory. The probability distribution over users, pieces, and features is decomposed into three conditionally independent ones by introducing latent variables. This decomposition enables us to efficiently and incrementally adapt the model for increasing numbers of users and rating scores. We evaluated our system by using audio signals of commercial CDs and their corresponding rating scores obtained from an e-commerce site. The results revealed that our system accurately recommended pieces including nonrated ones from a wide variety of artists and maintained a high degree of accuracy even when new users and rating scores were added.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:16 ,  Issue: 2 )