By Topic

Integrated Mining of Visual Features, Speech Features, and Frequent Patterns for Semantic Video Annotation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tseng, V.S. ; Nat. Cheng Kung Univ., Tainan ; Ja-Hwung Su ; Jhih-Hong Huang ; Chih-Jen Chen

To support effective multimedia information retrieval, video annotation has become an important topic in video content analysis. Existing video annotation methods put the focus on either the analysis of low-level features or simple semantic concepts, and they cannot reduce the gap between low-level features and high-level concepts. In this paper, we propose an innovative method for semantic video annotation through integrated mining of visual features, speech features, and frequent semantic patterns existing in the video. The proposed method mainly consists of two main phases: 1) Construction of four kinds of predictive annotation models, namely speech-association, visual-association, visual-sequential, and statistical models from annotated videos. 2) Fusion of these models for annotating un-annotated videos automatically. The main advantage of the proposed method lies in that all visual features, speech features, and semantic patterns are considered simultaneously. Moreover, the utilization of high-level rules can effectively complement the insufficiency of statistics-based methods in dealing with complex and broad keyword identification in video annotation. Through empirical evaluation on NIST TRECVID video datasets, the proposed approach is shown to enhance the performance of annotation substantially in terms of precision, recall, and F-measure.

Published in:

Multimedia, IEEE Transactions on  (Volume:10 ,  Issue: 2 )