By Topic

A High-Throughput MAC Protocol for Wireless Ad Hoc Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Wanrong Yu ; Nat. Univ. of Defence Technol., Changsha ; Jiannong Cao ; Xingming Zhou ; Xiaodong Wang
more authors

One way to improve the throughput of a wireless ad hoc network at the media access (MAC) layer is to allow as much as possible concurrent transmissions among neighboring nodes. In this paper, we present a novel high-throughput MAC protocol, called Concurrent Transmission MAC(CTMAC), which supports concurrent transmission while allowing the network to have a simple design with a single channel, single transceiver, and single transmission power architecture. CTMAC inserts additional control gap between the transmission of control packets (RTS/CTS) and data packets (DATA/ACK), which allows a series of RTS/CTS exchanges to take place between the nodes in the vicinity of the transmitting or receiving node to schedule possible multiple, concurrent data transmissions. To safeguard the concurrent data transmission, collision avoidance information is included in the control packets and used by the neighboring nodes to determine whether they should begin their transmissions. Also, to isolate the possible interference between DATA packets and ACK packets, a new ACK sequence mechanism is proposed. Simulation results show that a significant gain in throughput can be obtained by the CTMAC protocol compared with the existing work including the IEEE 802.11 MAC protocol.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 1 )