Cart (Loading....) | Create Account
Close category search window

A queue-based approach to power control in wireless communication networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chisci, L. ; Univ. di Firenze, Florence ; Fantacci, R. ; Mucchi, L. ; Pecorella, T.

In modern wireless communication systems, power control plays a fundamental role for efficient resource utilization, in particular in the systems where the users share the same bandwidth at the same time. In such systems, in fact, many users transmit over the same radio channel using the same frequency band and time slots so that the signal of an individual user becomes interference for the other users. Hence the transmission power levels need to be smartly manipulated so as to achieve an adequate quality of service for as many users as possible and, thus, an efficient network utilization. Conventional power control algorithms adopt the Signal-to-Interference-plus-Noise Ratio (SINR) as controlled variable and neglect the important effects of the manipulated control variables (transmission powers) and of the retransmission mechanism on the queueing dynamics. In this paper, we pursue a different queue-based approach which takes into account the queueing dynamics and adopts the queue size as controlled variable. In particular, a novel queue-based power control algorithm with low on-line computational burden is proposed and its performance is evaluated both theoretically and via simulation experiments.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.