By Topic

Cross-layer congestion and contention control for wireless ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yingqun Yu ; Univ. of Minnesota, Minneapolis ; Giannakis, G.B.

We consider joint congestion and contention control for multihop wireless ad hoc networks, where the goal is to find optimal end-to-end source rates at the transport layer and per-link persistence probabilities at the medium access control (MAC) layer to maximize the aggregate source utility. The primal formulation of this problem is non-convex and non-separable. Under certain conditions, by applying appropriate transformations and introducing new variables, we obtain a decoupled and dual-decomposable convex formulation. For general non-logarithmic concave utilities, we develop a novel dual-based distributed algorithm using the subgradient method. In this algorithm, sources at the transport layer adjust their log rates to maximize their net benefits, while links at the MAC layer select transmission probabilities proportional to their conceived contribution to the system reward. The two layers are connected and coordinated by link prices. Our solutions enjoy the benefits of cross-layer optimization while maintaining the simplicity and modularity of the traditional layered architecture.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 1 )