By Topic

Monitoring Environmental Boundaries With a Robotic Sensor Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sara Susca ; Univ. of California at Santa Barbara, Santa Barbara ; Francesco Bullo ; Sonia Martinez

In this brief, we propose and analyze an algorithm to monitor an environmental boundary with mobile agents. The objective is to optimally approximate the boundary with a polygon. The mobile sensors rely only on sensed local information to position some interpolation points and define an approximating polygon. We design an algorithm that distributes the vertices of the approximating polygon uniformly along the boundary. The notion of uniform placement relies on a metric inspired by approximation theory for convex bodies. The algorithm is provably convergent for static boundaries and efficient for slowly-moving boundaries because of certain input-to-state stability properties.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:16 ,  Issue: 2 )