By Topic

Bilateral Teleoperation Over Unreliable Communication Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chopra, N. ; Univ. of Illinois at Urbana-Champaign, Urbana ; Berestesky, P. ; Spong, M.W.

In this brief, we propose a passivity-based framework for control of bilateral teleoperators under time-varying delays and data loss. The usual scattering formalism which guarantees passivity for any constant time delay is extended in several important ways to handle adverse network dynamics. Communication management modules (CMM) are proposed to reconstruct the scattering variables while guaranteeing passivity of the bilateral teleoperator and asymptotic stability of the master/slave velocities under time-varying delays and data losses. The results are also extended to the discrete domain, in particular to the case where communication between the master and slave robots occurs over a packet-switched network. We show that passivity can be maintained in the face of varying delay and packet loss but that it depends fundamentally on the mechanism used to handle missing packets. Our framework unifies several existing results in the continuous and discrete time domain. We develop novel algorithms for the CMM which not only preserve passivity and stability, but have been shown through experiments to improve tracking performance in a single-degree-of-freedom teleoperator system.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:16 ,  Issue: 2 )