Cart (Loading....) | Create Account
Close category search window
 

Stemming Versus Light Stemming as Feature Selection Techniques for Arabic Text Categorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Duwairi, R. ; Qatar Univ., Doha ; Al-Refai, M. ; Khasawneh, N.

This paper compares and contrasts two feature selection techniques when applied to Arabic corpus; in particular; stemming, and light stemming were employed. With stemming, words are reduced to their stems. With light stemming, words are reduced to their light stems. Stemming is aggressive in the sense that it reduces words to their 3-letters roots. This affects the semantics as several words with different meanings might have the same root. Light stemming, by comparison, removes frequently used prefixes and suffixes in Arabic words. Light stemming doesn't produce the root and therefore doesn't affect the semantics of words; it maps several words, which have the same meaning to a common syntactical form. The effectiveness of above two feature selection techniques was assessed in a text categorization exercise for Arabic corpus. This corpus consists of 15000 documents that fall into three categories. The K-nearest neighbors (KNN) classifier was used in this work. Several experiments were carried out using two different representations of the same corpus; the first version uses stem- vectors; and the second uses light stem-vectors as representatives of documents. These two representations were assessed in terms of size, time and accuracy. The light stem representation was superior in terms of classifier accuracy when compared with stemming.

Published in:

Innovations in Information Technology, 2007. IIT '07. 4th International Conference on

Date of Conference:

18-20 Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.