By Topic

Performance improvement of embedded low-power microprocessor cores by selective flip flop replacement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Performance improvement of an ARM926 microprocessor core by selective replacement of standard master-slave flip flops using low-VT flip flops or a novel type of pulsed flip flop (P-FF) is investigated. Different replacement strategies are proposed that are independent of path and pipeline topologies. These strategies are compared to each other concerning performance improvement and costs. For an existing 90 nm CMOS design a 5% speed improvement on design level is achieved at low area overhead of 1%. An experimental verification of the proposed concept using a loop of critical paths shows 12% speed increase at 500 MHz and VDD=1.2 V in a 65 nm CMOS technology.

Published in:

Solid State Circuits Conference, 2007. ESSCIRC 2007. 33rd European

Date of Conference:

11-13 Sept. 2007