By Topic

Image Classification Using Correlation Tensor Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yun Fu ; Univ. of Illinois at Urbana-Champaign, Urbana ; Thomas S. Huang

Images, as high-dimensional data, usually embody large variabilities. To classify images for versatile applications, an effective algorithm is necessarily designed by systematically considering the data structure, similarity metric, discriminant subspace, and classifier. In this paper, we provide evidence that, besides the Fisher criterion, graph embedding, and tensorization used in many existing methods, the correlation-based similarity metric embodied in supervised multilinear discriminant subspace learning can additionally improve the classification performance. In particular, a novel discriminant subspace learning algorithm, called correlation tensor analysis (CTA), is designed to incorporate both graph-embedded correlational mapping and discriminant analysis in a Fisher type of learning manner. The correlation metric can estimate intrinsic angles and distances for the locally isometric embedding, which can deal with the case when Euclidean metric is incapable of capturing the intrinsic similarities between data points. CTA learns multiple interrelated subspaces to obtain a low-dimensional data representation reflecting both class label information and intrinsic geometric structure of the data distribution. Extensive comparisons with most popular subspace learning methods on face recognition evaluation demonstrate the effectiveness and superiority of CTA. Parameter analysis also reveals its robustness.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 2 )