By Topic

Circuit-Based Analysis of Electromagnetic Field Coupling With Nonuniform Transmission Lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Emad Gad ; Ottawa Univ., Ottawa

This paper presents a new algorithm for simulating electromagnetic (EM) field coupling with nonuniform multiconductor transmission lines in a circuit simulation environment. The proposed algorithm is based on the concept of passive model-order reduction, whereby an algorithmically developed passive reduced-order model, coupled with a set of equivalent sources representing the incident filed, are shown to accurately capture the behavior of the transmission line under EM excitation. The reduced-order model is developed independently from the particular shape of the incident field pulse, in the sense that, in constructing the model, one does not need prior knowledge about the waveform of the incident pulse of the EM field. In addition, it is also shown that the model developed can be used to simulate the transmission line in the absence of the EM field. The derived equivalent sources, representing the field coupling, are given directly in the time domain, thereby making simulation under nonlinear circuit terminations an easy task. Although the proposed work is aimed mainly at simulating nonuniform transmission lines, it can be applied to uniform lines as a special case. The proposed algorithm has been validated numerically with several examples.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:50 ,  Issue: 1 )