By Topic

On Feature Extraction via Kernels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng Yang ; Peking Univ., Beijing ; Liwei Wang ; Jufu Feng

Using the kernel trick idea and the kernels-as-features idea, we can construct two kinds of nonlinear feature spaces, where linear feature extraction algorithms can be employed to extract nonlinear features. In this correspondence, we study the relationship between the two kernel ideas applied to certain feature extraction algorithms such as linear discriminant analysis, principal component analysis, and canonical correlation analysis. We provide a rigorous theoretical analysis and show that they are equivalent up to different scalings on each feature. These results provide a better understanding of the kernel method.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:38 ,  Issue: 2 )