Cart (Loading....) | Create Account
Close category search window
 

Secure k-Connectivity Properties of Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yee Wei Law ; Univ. of Melbourne, Melbourne ; Li-Hsing Yen ; Di Pietro, R. ; Palaniswami, M.

A k-connected wireless sensor network (WSN) allows messages to be routed via one (or more) of at least k node-disjoint paths, so that even if some nodes along one of the paths fail, or are compromised, the other paths can still be used. This is a much desired feature in fault tolerance and security, k-connectivity in this context is largely a well-studied subject. When we apply the random key pre-distribution scheme to secure a WSN however, and only consider the paths consisting entirely of secure (encrypted and/or authenticated) links, we are concerned with the secure k-connectivity of the WSN. This notion of secure k-connectivity is relatively new and no results are yet available. The random key pre-distribution scheme has two important parameters: the key ring size and the key pool size. While it has been determined before the relation between these parameters and 1-connectivity, our work in k-connectivity is new. Using a recently introduced random graph model called kryptograph, we derive mathematical formulae to estimate the asymptotic probability of a WSN being securely k-connected, and the expected secure k-connectivity, as a function of the key ring size and the key pool size. Finally, our theoretical findings are supported by simulation results.

Published in:

Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal Conference on

Date of Conference:

8-11 Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.