By Topic

MVSINK: Incrementally Improving In-Network Aggregation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leonardo L. Fernandes ; University of Trento, Italy; FBK-IRST, Italy, ; Amy L. Murphy

In-network data aggregation is widely recognized as an acceptable means to reduce the amount of transmitted data without adversely affecting the quality of the results. To date, most aggregation protocols assume that data from localized regions is correlated, thus they tend to identify aggregation points within these regions. Our work, instead, targets systems where the data sources are largely independent, and over time, the sink requests different combinations of data sources. The combinations are essentially aggregation functions. This problem is significantly different from the localized one because the functions are initially known only by the sink, and the data sources to be combined may be located in any part of the network, not necessarily near one another. This paper describes MVSink, a protocol that lowers the network cost by incrementally pushing the aggregation function as close to the sources as possible, aggregating early the raw data. Our results show significant savings over a simplistic approach, and demonstrate that a data request needs to be active only for a reasonably short period of time to overcome the cost of identifying the best aggregation point.

Published in:

2007 IEEE International Conference on Mobile Adhoc and Sensor Systems

Date of Conference:

8-11 Oct. 2007