Cart (Loading....) | Create Account
Close category search window
 

Throughput Optimization Routing Under Uncertain Demand for Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Dai ; Vanderbilt Univ., Nashville ; Yuan Xue ; Bin Chang ; Yi Cui

Wireless mesh networks have attracted increasing attention and deployment as a high-performance and low-cost solution to last-mile broadband Internet access. Network routing plays a critical role in determining the performance of a wireless mesh network. To study the best mesh network routing strategy which can maximize the network throughput while satisfying the fairness constraints, existing research proposes to formulate the mesh network routing problem as an optimization problem. These works usually make ideal assumptions such as known static traffic input. Whether they could be applied for practical use under the highly dynamic and uncertain traffic in wireless mesh network is still an open issue. The main objective of this paper is to understand the effects of traffic uncertainty in wireless mesh networks and consider these effects in throughput maximization routing. It identifies the appropriate optimization framework that could integrate the statistical user traffic demand model into a tractable throughput maximization problem. The trace-driven simulation study demonstrates that our algorithm can effectively incorporate the traffic demand uncertainty in routing optimization, and outperform the throughput maximization routing which only considers static traffic demand.

Published in:

Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal Conference on

Date of Conference:

8-11 Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.